• 로그인
QUICK MENU

고려대학교 교수소개

Knowledge & Innovation

소개

Prof. 장호

Tel:  02-3290-3276

E-mail: hojang@korea.ac.kr

  • About Professor
  • Curriculum Vitae
  • Publication
  • Research
  • Teaching
  • Lab Members
  • Profile

     

    ◆ 과거 20여년 간 대표적인 브레이크 패드에 관한 연구를 꾸준히 수행하여 왔으며 마찰마모 (Tribology) 관련 논문집 중 가장 인용도가 높은 Wear, Tribology International, Tribology Letters에 매년 다수의 논문을 발표(마찰마모관련 논문의 교신저자로 총 78편 게재). 현재 Wear 저널의 field editor 및 매년 개최되는 International Friction Forum 및 SAE (미국자동차학회) Brake Colloquium의 advisory board로 역할하고 있음.

     

    ◆ Encyclopedia of Tribology (Springer 2013) 및 Polymer Tribology (Imperial College Press 2009)에 브레이크 패드에 관해 저술.

     

    ◆ 브레이크와 관련된 정부 및 기업과제 총 30여건을 성공적으로 수행하였으며 현재는 국내 미세먼지저감 실현을 위해 환경부 대기환경정책관실의 자문역을 수행하고 있으며 특히 브레이크 미세먼지 저감 정책 수립에 적극 참여하여 국내 공기질 개선에 일익을 담당하고 있음.

     

  • Curriculum Vitae

     

    ◆ 학력

     

    1977.3 - 1981.2 고려대학교 공과대학 금속공학과 (공학사) 
    1981.3 - 1983.2 고려대학교 공과대학 금속공학과 (공학석사) 
    1986.1 - 1990.6 Virginia Tech, U.S.A , Material Sci & Eng (공학박사)
     
    경력
     
    1987.10 - 1988.2 아르헨티나 국립 원자력 연구소, Visiting scientist 
    1989.5 - 1989.11 네델란드 국립 재료연구소, Visiting scientist
    1985.9 - 1990.8 미국 Virginia Tech 재료공학과, Research Assistant 
    1990.9 - 1991.8 미국 Northwestern Univ 재료공학과, Post-doctoral fellow
    1991.9 - 1993.8 미국 Northwestern Univ 소속 재료연구소, Research Associate
    1993.9 - 1996.1 미국 Ford Scientific Research Laboratory, Research Scientis
    1996.3 - 1998.2 고려대학교 공과대학 재료금속공학부, 조교수
    1998.3 - 2003.2 고려대학교 공과대학 재료공학부, 부교수
    2003.3 -   현재    고려대학교 공과대학 신소재공학부, 교수
  • Publication

     

     

    1.        Noh, H. and H. Jang, Friction instability induced by iron and iron oxides on friction material surface. Wear, 2018. 400: p. 93-99.

    2.        Lee, S. and H. Jang, Effect of plateau distribution on friction instability of brake friction materials. Wear, 2018. 400: p. 1-9.

    3.        Chang, Y.H., et al., Size effect of tire rubber particles on tribological properties of brake friction materials. Wear, 2018. 394: p. 80-86.

    4.        Jang, H., et al., The effect of the composition and microstructure of gray cast iron on preferential wear during parasitic drag and on intrinsic damping capacity. 2003, SAE Technical Paper.

    5.        Shin, M., et al., The effect of residual stress on the distortion of gray iron brake disks. Journal of materials engineering and performance, 2013. 22(4): p. 1129-1135.

    6.        Shin, M., et al., Tribological characteristics of binder resins for brake friction materials at elevated temperatures. Tribology letters, 2010. 38(2): p. 161-168.

    7.        Rhee, T., M. Shin, and H. Jang, Effects of humidity and substrate hydrophilicity on nanoscale friction. Tribology International, 2016. 94: p. 234-239.

    8.        Park, S.B., et al., Tribological properties of brake friction materials with steel fibers. Metals and Materials International, 2009. 15(1): p. 27-32.

    9.        Park, J.S., et al., The effect of material properties on the stick–slip behavior of polymers: A case study with PMMA, PC, PTFE, and PVC. Wear, 2017. 378–379: p. 11-16.

    10.      Noh, H.J., et al., Effect of grain size on the electrical failure of copper contacts in fretting motion. Tribology International, 2017. 111: p. 39-45.

    11.      Lee, W.K., et al., Effects of antimony trisulfide (Sb2S3) on sliding friction of automotive brake friction materials. Metals and Materials International, 2013. 19(5): p. 1101-1107.

    12.      Kim, S.J. and H. Jang, Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp. Tribology international, 2000. 33(7): p. 477-484.

    13.      Jang, H., et al., The effect of metal fibers on the friction performance of automotive brake friction materials. Wear, 2004. 256(3): p. 406-414.

    14.      Hwang, H., et al., Tribological performance of brake friction materials containing carbon nanotubes. Wear, 2010. 268(3): p. 519-525.

    15.      Cho, M.H., et al., Tribological properties of solid lubricants (graphite, Sb 2 S 3, MoS 2) for automotive brake friction materials. Wear, 2006. 260(7): p. 855-860.

    16.      Cho, M., et al., Atomic scale stick-slip caused by dislocation nucleation and propagation during scratching of a Cu substrate with a nanoindenter: a molecular dynamics simulation. Wear, 2005. 259(7): p. 1392-1399.

    17.      Lee, W., K. Cho, and H. Jang, Molecular dynamics simulation of rolling friction using nanosize spheres. Tribology Letters, 2009. 33(1): p. 37-43.

    18.      Jang, H., et al., The effect of solid lubricants on friction characteristics. 1998, SAE Technical Paper.

    19.      Shin, M., T. Rhee, and H. Jang, Nanoscale Friction Characteristics of a Contact Junction with a Field-Induced Water Meniscus. Tribology Letters, 2016. 62(2): p. 1-5.

    20.      Gweon, J.H., B.S. Joo, and H. Jang, The effect of short glass fiber dispersion on the friction and vibration of brake friction materials. Wear, 2016. 362: p. 61-67.

    21.      Yoon, S.W., et al., Effect of surface contact conditions on the stick-slip behavior of brake friction material. Wear, 2012. 294: p. 305-312.

    22.      Sung, I.H., et al., Effect of displacement and humidity on contact resistance of copper electrical contacts. Tribology International, 2016. 95: p. 256-261.

    23.      Kim, S.H. and H. Jang, Friction and vibration of brake friction materials reinforced with chopped glass fibers. Tribology Letters, 2013. 52(2): p. 341-349.

    24.      Shin, M.W., Y.H. Kim, and H. Jang, Effect of the Abrasive Size on the Friction Effectiveness and Instability of Brake Friction Materials: A Case Study with Zircon. Tribology Letters, 2014. 55: p. 371-379.

    25.      Shin, M.W., S.S. Kim, and H. Jang, Friction and Wear of Polyamide 66 With Different Weight Average Molar Mass. Tribology Letters, 2011. 44(2): p. 151-158.

    26.      Shin, M.W., et al., Friction Instability Induced by Corrosion of Gray Iron Brake Discs. Tribology Letters, 2010. 37(2): p. 149-157.

    27.      Park, S.B., et al., The studies of structural stability of LiNi0.5Mn1.5O4 spinel. Journal of the Korean Institute of Metals and Materials, 2008. 46(3): p. 174-181.

    28.      Park, C.W., M.W. Shin, and H. Jang, Friction-induced stick-slip intensified by corrosion of gray iron brake disc. Wear, 2014. 309(1-2): p. 89-95.

    29.      Lim, D.S., et al., Effect of CNT distribution on tribological behavior of alumina-CNT composites. Wear, 2005. 259(1-6): p. 539-544.

    30.      Lim, D.S., et al., Temperature effects on the tribological behavior of alumina reinforced with unidirectionally oriented SiC whiskers. Wear, 2001. 251: p. 1452-1458.

    31.      Lee, W.K. and H. Jang, Moisture effect on velocity dependence of sliding friction in brake friction materials. Wear, 2013. 306(1–2): p. 17-21.

    32.      Lee, W.K., et al., The influence of humidity on the sliding friction of brake friction material. Wear, 2013. 302(1-2): p. 1397-1403.

    33.      Lee, S.M., M.W. Shin, and H. Jang, Effect ofcarbon-nanotube length on friction and wear of polyamide 6,6 nanocomposites. Wear, 2014. 320: p. 103-110.

    34.      Lee, S.M., et al., Surface roughness and the corrosion resistance of 21Cr ferritic stainless steel. Corrosion Science, 2012. 63: p. 404-409.

    35.      Kim, S.S., M.W. Shin, and H. Jang, Tribological properties of short glass fiber reinforced polyamide 12 sliding on medium carbon steel. Wear, 2012. 274: p. 34-42.

    36.      Kim, S.S., M.W. Shin, and H. Jang, The Wear Mechanism of a Polyphenylene Sulfide (PPS) Composite Mixed with Ethylene Butyl Acrylate (EBA). Tribology Letters, 2012. 47(2): p. 165-173.

    37.      Kim, S.J., et al., High temperature wear properties of multiphase composite: The role of transfer film. Materials Science Forum, 2004. 449-452: p. 81-84.

    38.      Kim, S.J., K.S. Kim, and H. Jang, Optimization of manufacturing parameters for a brake lining using Taguchi method. Journal of Materials Processing Technology, 2003. 136(1-3): p. 202-208.

    39.      Kim, S.J., et al., Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material. Wear, 2001. 251: p. 1484-1491.

    40.      Kim, S.J., et al., Complementary effects of solid lubricants in the automotive brake lining. Tribology International, 2007. 40(1): p. 15-20.

    41.      Kim, S.J., et al., Tribological properties of polymer composites containing barite (BaSO4) or potassium titanate (K2O center dot 6(TiO2)). Tribology Letters, 2004. 17(3): p. 655-661.

    42.      Kim, J.W. and H. Jang, Friction and wear of monolithic and glass-fiber reinforced PA66 in humid conditions. Wear, 2014. 309(1-2): p. 82-88.

    43.      Jang, H., J.S. Lee, and J.W. Fash, Compositional effects of the brake friction material on creep groan phenomena. Wear, 2001. 251: p. 1477-1483.

    44.      Jang, H. and S.J. Kim, The effects of antimony trisulfide (Sb2S3) and zirconium silicate (ZrSiO4) in the automotive brake friction material on friction characteristics. Wear, 2000. 239(2): p. 229-236.

    45.      Jang, G.H., et al., Tribological Properties of C/C-SiC Composites for Brake Discs. Metals and Materials International, 2010. 16(1): p. 61-66.

    46.      Hong, U.S., et al., Wear mechanism of multiphase friction materials with different phenolic resin matrices. Wear, 2009. 266(7-8): p. 739-744.

    47.      Cho, M.H., et al., Effects of ingredients on tribological characteristics of a brake lining: an experimental case study. Wear, 2005. 258(11-12): p. 1682-1687.

    48.      Cho, M.H., et al., Tribological study of gray cast iron with automotive brake linings: The effect of rotor microstructure. Tribology International, 2003. 36(7): p. 537-545.

    49.      Cho, M.H., et al., The Role of Transfer Layers on Friction Characteristics in the Sliding Interface between Friction Materials against Gray Iron Brake Disks. Tribology Letters, 2005. 20(2): p. 101-108.

    50.      Cho, K.H., et al., The size effect of zircon particles on the friction characteristics of brake lining materials. Wear, 2008. 264(3-4): p. 291-297.

    51.      Cho, K.H., et al., Tribological properties and electrical signal transmission of copper-graphite composites. Tribology Letters, 2007. 27(3): p. 301-306.

    52.      Cho, K.H., et al., Tribological properties of potassium titanate in the brake friction material; Morphological effects. Tribology Letters, 2008. 32(1): p. 59-66.

     

     

  • Research

     
    ◆ Tribology (Friction & Wear)
     
    1. 자동차용 브레이크 마찰재의 개발 및 연구
        브레이크 성능 개선을 위한 원료 및 조성 개발 
        브레이크 기인 자동차 진동, 소음 (NVH)의 메커니즘 규명 및 저감 기술 개발
        브레이크 패드-디스크 간 녹고착의 메커니즘 규명
        브레이크 기인 미세먼지(PM)의 발생 메커니즘 규명 및 저감 친환경 마찰재 개발
     2. 철도용 브레이크 마찰재 평가 및 개발
     3. 나노 수준에서의 마찰 현상 분석을 통한 근본적인 마찰 메커니즘 규명
  • Teaching

     

    ◆ AMSE-205 재료 구조 물성 (Structural properties of materials) 

         - 10, 15, 18년도 석탑 강의상, 11, 12, 14, 16, 17년도 우수 강의상
     

    ◆ AMSE-205 금속 재료 (Structure and properties of metals and alloys)
         - 14, 15, 16년도 석탑 강의상, 10, 11, 12, 17, 18년도 우수 강의상

     

    ◆ AMSE-432 복합 재료 (Composite materials)

         - 11, 12, 13, 15, 17년도 우수 강의상

     

    ◆ AMS-611 마찰 및 마모 특성 (Friction and wear of materials)

  • Lab Members

     

             

       

                   주병수                                   권재현                                    박종성                                    서형조

          석ㆍ박사 통합과정                  석ㆍ박사 통합과정                        박사 과정                          석ㆍ박사 통합과정

    foruexistme@korea.ac.kr         imsu4rv@korea.ac.kr        whdtjd8294@korea.ac.kr      haqqyboy@korea.ac.kr

     

     

            

     

                   송완수                                     이동규                                   최진수                                  김대용                             

           석ㆍ박사 통합과정                       학부 연구생                           학부 연구생                          학부 연구생

         polosic@korea.ac.kr           ehdrb2216@korea.ac.kr     wlstn1029@korea.ac.kr        acokdv@korea.ac.kr

     

     

     

                  정우준

              학부 연구생

      mark1791@korea.ac.kr

     

     

    (이 화면은 PC환경에 최적화 되어있습니다)